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Pass-Band VS WR of Maximally

Flat Band-Pass Filters*

Microwave band-pass filters using high-

Q cavity resonators can often be designed for

almost negligible midband dissipation losses

(i.e., <~ db). If these filters are designed for
a maximally flat amplitude response, the

insertion loss within the pass band is ap-
proximately equal to the reflection loss with-
in the pass band. Then

R = 10 log (1 + X2”),

where

R = reflection loss in db

X= normalized frequency variable

n = number of cavity resonators.

Correspondence

Letting p= input VSWR,

I+lrl I+xn~ _ _– = –-—–— .

I–lrl l–x”

Curves asp vs X have been plotted in Fig. 1
using the above equation for values of n

from 1 to 8.
If the approximation of X2~<<l is not

used, it can be shown that

2 + 4X’”+ <(2 + 4X2”)2 – 4
~ . —-–——— _—— —

2

If XZ~=O.125, ,0=2.0 using the exact equa-

tion for p. [f the approximate equation is

used, with X2”=0.125 p is equal to 2.1. It
can be concluded that the curves shown are

satisfactory for most purposes when p s2.0.

Fig. 1.

For narrow-band filters,

where

f= frequency

fo = center frequency of filter
Af = 3-db bandwidth of filter.

Now

1 + X2. = __L__ ,

l–l r]’

where

r = voltage reflection coefficient

looking into the filter

1– I r!z=—~—–~l—.xa”
1 + X2’

if X2~<<l

* Received by the PGMTT, December 12, 1961.

The approximation used can also be ap-

plied to deriving equations for the VSWR

of quasi-dissipationless filters of other re-
sponse shapes, such as constant —K or

Tchebycheff.
RICHARD M. KURZROK

Surface Communications Systems Lab.

Radio Corporation of America
New York, N. Y.

An Approximate Method of Finding

the Order of a Combination Bessel-

Function Equation*

Assume a transverse electric wave, TE
mode, propagated in a waveguide with a
circular boundary. The radial boundary con-
dition gives a combination Bessel function

.
equation; ~.e.,

* Received by the PGMTT, December 7, 1961.
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Zp’(ti) = Jg’(x)Np’(*i) – ND’(x)Y2’(xi)

. 0, (1)

where

% = pcpo Xi = $@i.

The terms p. and p; are the radius of the

circular boundaries of the waveguide, ~, is
the cutoff wave number, and P is the order

of the Bessel functions.
For a coaxial waveguide, p is determined

from the angular boundary and is an integer

such as O, 1, 2, etc.
For a lunar Iine,l ~. is assumed and sub.

stituted in (1) to solve p. The arguments

X and Xi are small, and the series form of

the Bessel functions converges rapidly. By

taking finite terms and using a graphic
. .

method, two real roots of @ are obtained:
one positive and one equal negative root. It
is verv complicated and difficult to find the. .
complex roots using this method. However,

using the following approximate method,
the real roots and the complex roots @ of

(1) can be obtained. Eq. (1) can be written

as

[J2’(zi)/.7p’(x)] = [N2’(ak)/N&’(x)], (2)

where

O<(xi–x) <l.

By the Taylor series expansion,

Jn’(az) = 1,,’($) + (a%– X)JP’’(2K)

+ %;TZ%’’’(X) + . . . . (3)

Substituting the series forms of lP’(w) and

NP’(x~) into (2) simplifies that equation to

[J*’’(X) N;(X) - N2’’(I)JP’(*)]

+“”” =0. (4)

From the differential equations,

Y.’’(x) + + .7,’(X) + (1 – $) J,(z) = o (5)

and

The difference of (5) times N,’(x) and (6)

times .TP’(x) gives

~P’’(x)Nx’(x) – NP’’(x)~=’(x)

_ ?ps 2
— — – . (7)

7T.%3 r%

1 A. Y. HU and A. Ishimaru, “The dominant cut-
off wavelength of a I“nar line,’> IRE TRANS. ON
MICROWAVE THEORY AND TECHNIQUES, vol. MTT-9,
PP. 552–556; November, 1961.
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The difference of differential (5) times

IVr’(x) and differential (6) times .TZ’(x) gives

J;’’(X) N;(Z) – N,,’’’,)”7P7(2)2)

Similarly

.7PIV(X)N2’(X) – NVI’’(.,)JP’(.,)

. :$+:xy–~–+,+~ (9)
7r.%

Jp~(x)N,’(.v) – N,~(z)Jp’(x)

2oj4—. _ —— –::+;$:+:$
T@

4
. . . etc. (lo)

rr”rz

If (x%–x) is very small, the higher power

terms of (xi –x) may be neglected for the

approximate computation. Substituting (7)-
(9) into (4) and dropping the terms higher
than (x; –X)2 yields

(.G – x) ’j’ + (11x,2 – 31x,x+ 26x’

– 2a’,’# + 4V,X3 – 2.@)p’

+ (.@ – @*5+ Z,2”V4– 3.&.r4

+ 9.LJ3 – 12*4) = o. (11)

Substituting (7)–(10) into (4) and dropping

the terms higher than (.v, —x )$ gives

+ -’[-2+34
+ ) 3“K3(.r%– .Y) + (.,4 – ‘x’) (x, – x)’

-6*4+(-’’3HII ‘0 “2)
Sample of calculation: if .x, =0.6566 and
x = 0.544375, substituting x, and x into (11)
yields

~ = + 0..59495 and p = t j10.406;

substituting xi and x into ( 12) yields

P = * 0.60078 and p = t y14.769.

The real roots colmputed from the Bessel
function series expansion are t 0.599 and
are close to the values obtained from (11)

and (12). The first pairs of complex roots
obtained with (11 ) are different from those

obtained with (12). The complex roots of (4)
must be sol>-ed with more higher-power
terms to obtain a close value. Howe~-er,
these complex roots are large and the field
will attenuate quickly.
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A Source of Error in the Use of

Slope Detection for Perturbation

Measurements*

In a typical laboratory measurement of
the field-intensity distribution in a reso-
nant cavity, the resonant frequency of the
cavity is determined as a function of the
position of a small metal or dielectric bead.
The field distribution itself is then deduced
directly from the frequency change.

A simple scheme advanced by Ayers,
Chu and Gallagher’ depends on the fact that
a graph of the logarithm of the response of
a cavity m frequency is T-cry nearly linear
between 1 and 7 db below the maximum re-
sponse. In this region, the frequency per-

length L symmetrically coupled by ideal

transformers of turns-ratio n arranged to
produce a voltage maximum at each end of

the cavity, The propagation constant at
resonance is ~ = a +~~. A small change of the

operating frequency will produce little
change of the attenuation constant a but will

change the phase constant to a new value

B +E, where ~ is proportional to the fre-
quency change. A small perturbing bead

with norms lized admittance~B is introduced
at a distance 1 from one end of the cavity.

The effect of the bead may be described by

computing the over-all transmission co-

efficient SI.2 of the circuit. z
For the usual case of a weakly coupled

cavity, one finds, to first-order in A = d,

~s,,l~ . —–—
L(I – A/2)

1 + (~+ b COS’$Z)’ + ~Ab2 COS3/31[4(1 -- 21/L) sin @ – cos ~~]’
(1)

turbation caused by a bead is directly pro-
portional to the change of attenuation
through the cavity with a maximum error
of ~ 1 per cent of the range. A fixed-fre-
quency source is tuned sli.ghtl~ off the un-

perturbed resonance of the cavity; any of a
number of circuits for measuring the change

of insertion loss of the cavity may be used;

and a large amount of data may be taken

quickly.
This scheme of “slope detection” has one

disadvantage: the power range in which the
variation is linear is only 6 db, and high
precision is difficult to attain. It would ap-

pear reasonable to relinquish the linear
property and to use larger perturbations
which reduce the signal transmissions
through the ca~ity as much as 20 db. It
would be required, of course, that the Q and

coupling to the cavity remain unchanged.
It is the purpose of this note to demon-

strate that the effective COLl@Ig k changed,

howet,er, if the frequency perturbation is

much larger than the unperturbed band-

width of the cat,ity. The phase shift intro-

duced by the bead can cause the excitation

at one end of the cavity to be greater than
that at the other so that, for a given excita-

tion at the \,icinity of the input coupling
loop, the total stored energ>- in the cavity
may vary. Thus, the coupling efficiency of
the loop and the transmission efficiency of
the cavity no longer follow the first-order
predictions.

Consider the cavity of Fig. 1, consisting
of a section of uniform transrnssion line of

In & ,t. + jB +L–1+ n,l
,,

Fig. l—Equivalent circuit of cavity.

* Received by the PGMTT, June 12, 1961; re-
vised manuscnpt received, December 2, 1961. This
w?rk was supported by the U, S. Atomic Energy COm.
mission.

1 W. R. Ayers, E. L. Chu, and W. J. Gallagher,
“Measurements of Interaction Impedance m Periodic
Circuits, ” W. W. Hansen Labs. of Ph yslcs, Stanford
University, Stanford, Cahf., Internal Memo., ML
Rept. No, 403; June, 1957.

where k = l/n2aL is the coupling coefficient,

b = B/aL is a renormalization of the bead
susceptance, A is a small quantity which
represents the loss within the cavity, and
6 is the frequency shift, normalized to the
half-bandwidth of the cavity. Note that

cos cd represents the unperturbed electric

field distribution.
It is the last term in the denominator

which leads to the distortion of the re-

sponse. It appears to be small since it is of
order, A, but the term is also proportional
to bz. From the first terlm, it will be recog.
nized that b is the ratio of the maximum

frequency perturbation introduced by the

bead to the half-bandwidth of the cavity.
If the bead is large enough to shift the reso-
nant frequency se\,eral bandwidths, the fac-

tor bz may well be large enough to make the
factor in 1 –21/L significant. (It should be

noted that, since the frequency variable 6

does not enter this term, the resonant fre-

quency itself continues to follow the first-

order perturbation theory. )
This effect has been observed in tests of

~r/3 nlode disl~.foaded accelerator sections,

For a 3-disk cavity, one wavelength long,

a frequency perturbation curve of the form

of Fig. 2(a) was observed. The data were ob-
tained using slope detection and a large
bead which introduced a maximum change
of transmission of — 19 db. The cor\-e ap-
peared to agree with expectations except
for the end effect where the bead interacts
with its image in the end-plate, To eliminate

the end-plate errors, a second measurement

was made with a 6-disk (two-wavelength)
cavit~-. It was expected that the curve would
be identical to two of the original curves
pasted together except, of course, for the

elimination of end-plate effects on the cen-
tral hump. Instead, the curve was found to
be considerably distorted, as shown in
Fig. 2 (b).

In the latter cavity the voltage attenu-
ation was relatively large, so that A = aL

~ This analysis is presented without regard for
space-harmonics in the cawty. The author has shown
in a recent paper. “A Perturbation Techruque for
Impedance Measure mmts” (nresw tea at the IEE.. . ........
Conf. on Microwave Measurements and Techniques,
London, Eng,, September 6,1961 ), that the presence of
space harmonics moddies the effective susceptance of
the bead m a manner strictly Deriodic with the In. d.
ing elements of the structure:


