1962

Pass-Band VSWR of Maximally
Flat Band-Pass Filters*

Microwave band-pass filters using high-
@ cavity resonators can often be designed for
almost negligible midband dissipation losses
(i.e., <% db). If these filters are designed for
a maximally flat amplitude response, the
insertion loss within the pass band is ap-
proximately equal to the reflection loss with-
in the pass band. Then

R = 101log (1 + X?),
where
R=reflection loss in db

X =normalized frequency variable
n=number of cavity resonators.

PASSBAND VSWR VS$

Correspondence

Letting p=input VSWR,

14 r] 14 xe
1—|r 1—X»

P

Curves as p vs X have been plotted in Fig. 1
using the above equation for values of #
from 1 to 8.

If the approximation of X<l is not
used, it can be shown that

_ 244X+ V2 + X -4
N 2

P

If X*»=0.125, p=2.0 using the exact equa-

tion for p. If the approximate equation is
used, with X?#=0.125 p is equal to 2.1. It
can be concluded that the curves shown are
satisfactory for most purposes when p<2.0.
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For narrow-band filters,

xS

b

where

f={requency
fo=center frequency of filter
Af =3-db bandwidth of filter.

Now
1 + X27L . ___.__1___,
1—|rf
where
T'=voltage reflection coefficient
looking into the filter
1 .
l—|rlt= ot X2 i Xt
fol4 X
l T |2=X2n
|| =x"

* Received by the PGMTT, December 12, 1961.

The approximation used can also be ap-

plied to deriving equations for the VSWR
of quasi-dissipationless filters of other re-

sponse shapes, such as constant —K or
Tchebycheff.

Ricrarp M. Kurzrok

Surface Communications Systems Lab.

Radio Corporation of America

New York, N. Y.

An Approximate Method of Finding
the Order of a Combination Bessel-
Function Equation*

Assume a transverse electric wave, TE
mode, propagated in a waveguide with a
circular boundary. The radial boundary con-

dition gives a combination Bessel function
equation; 4.e.,

* Received by the PGMTT, December 7, 1961,

145

Zp'(x:) = T/ (®)N' (5) — N/ ()" (x:)
=0, (1)
where

% = Bopo xi = Bep;.

The terms p, and p; are the radius of the
circular boundaries of the waveguide, 8, is
the cutoff wave number, and p is the order
of the Bessel functions.

For a coaxial waveguide, p is determined
from the angular boundary and is an integer
such as 0, 1, 2, etc.

For a lunar line,! 8, is assumed and sub-
stituted in (1) to solve p. The arguments
X and X; are small, and the series form of
the Bessel functions converges rapidly. By
taking finite terms and using a graphic
method, two real roots of p are obtained:
one positive and one equal negative root. It
is very complicated and difficult to find the
complex roots using this method. However,
using the following approximate method,
the real roots and the complex roots p of
(1) can be obtained. Eq. (1) can be written
as

o' ) /Ty ()] = [N/ () /N ()], (2)
where
0< (x—2) <1,

By the Taylor series expansion,

Jp,(xi) = Jp,(x) + (xz - x)]p”<x)
(xi — x)*

+ 73T_]pl’l(x) +-0 3

Substituting the series forms of J,'(x;) and
Np'(x;) into (2) simplifies that equation to

2" (N, () — Ny ()7, ()]

n &g{_xz []p,"<x>Np,(x) — Np,//(x)-]p,(x)]

+ (x_;rx)—z [TV @ (@) ~ NIV ()75 ()]
oy T DU N @) — Ny, )]
+ ‘e = 0. (4)

From the differential equations,

B+ 1) + (1- f) Tox) = 0.(5)

%2

and

1
N, (%) + ; Ny (%)

p?
+(1-L)ww -0 ©
x
The difference of (5) times N,’(x) and (6)
times J,'(x) gives

T N (x) — N ()] (x)

e e ()

' A. V. Hu and A. Ishimaru, “The dominant cut-
off wavelength of a lunar line,” IRE TRANS. ON
MicrowavE THEORY AND TECHNIQUES, vol. MTT-9,
pp. 552-556; November, 1961,
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The difference of differential (5) times
N,y/'(x) and differential (6) times J,'(x) gives
Ty @)N, () — N7 (0T (%)

6p? 2
_ o +2.(8)

wxt  wx?

Similarly
TV @)V () — V" ()T ()

e a6 2
78 x5 Txd  wxd
TV ()N, (2) — va(x)]p’(x)
20p%  100p2  24p 24
[ ST R i g
— —4—2 - - - etc. (10)
X

If (x,—=x) is very small, the higher power
terms of (x;—x) may be neglected for the
approximate computation. Substituting (7)-
(9) into (4) and dropping the terms higher
than (x; —x)? yields

(i — x)2p* + (15,2 — 31w,z + 2642
— 2x, %% 4 4w, n® — 2x%) p?
+ (48 — 20,25 + 2,20 — 3242
+ Ox, 5% — 1224 = 0. (11

Substituting (7)-(10) into (4) and dropping
the terms higher than (v, —x)3 gives

S5{x, — a8
Pl ]
+ p2§6x2 — Ox(w; — x) + (11 — 2x%)(x, — )2
25
+ (x, — x)8 I:—Z —I—3:c]%
+ §3x3(~n — )+ (& — 3 (v, — x)?

— 6t 4 (1, — 1) [3x - %3]% —0. (12)

Sample of calculation: if %, =0.6566 and
x=0.544375, substituting ¥, and ¥ into (11)
yields

p=£059495 and p = * j10.406;
substituting x; and x into (12) yields
p =+ 060078 and p = + j14.769.

The real roots computed from the Bessel
function series expansion are +0.599 and
are close to the values obtained from (11)
and (12). The first pairs of complex roots
obtained with (11) are different from those
obtained with (12). The complex roots of (4)
must be solved with more higher-power
terms to obtain a close value. However,
these complex roots are large and the field
will attenuate quickly.
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A Source of Error in the Use of
Slope Detection for Perturbation
Measurements*

In a typical laboratory measurement of
the field-intensity distribution in a reso-
nant cavity, the resonant frequency of the
cavity is determined as a function of the
position of a small metal or dielectric bead.
The field distribution itself is then deduced
directly from the frequency change.

A simple scheme advanced by Ayers,
Chu and Gallagher!® depends on the fact that
a graph of the logarithm of the respounse of
a cavity vs frequency is very nearly linear
between 1 and 7 db below the maximum re-
sponse. In this region, the frequency per-

March

length L symmetrically coupled by ideal
transformers of turns-ratio # arranged to
produce a voltage maximum at each end of
the cavity. The propagation constant at
resonance is v =a4j8. A small change of the
operating frequency will produce little
change of the attenuation constant « but will
change the phase constant to a new value
B+e, where ¢ is proportional to the fre-
quency change. A small perturbing bead
with normalized admittance 7B is introduced
at a distance / from one end of the cavity.
The effect of the bead may be described by
computing the over-all transmission co-
efficient Sys of the circuit.?

For the usual case of a weakly coupled
cavity, one finds, to first-order in A=al,

k(1 —A/2)

turbation caused by a bead is directly pro-
portional to the change of attenuation
through the cavity with a maximum error
of +1 per cent of the range. A fixed-fre-
quency source is tuned slightly off the un-
perturbed resonance of the cavity; any of a
number of circuits for measuring the change
of insertion loss of the cavity may be used;
and a large amount of data may be taken
quickly.

This scheme of “slope detection” has one
disadvantage: the power range in which the
variation is linear is only 6 db, and high
precision is difficult to attain. It would ap-
pear reasonable to relinquish the linear
property and to use larger perturbations
which reduce the signal transmissions
through the cavity as much as 20 db. It
would be required, of course, that the ( and
coupling to the cavity remain unchanged.

It is the purpose of this note to demon-
strate that the effective coupling is changed,
however, if the frequency perturbation is
much larger than the unperturbed band-
width of the cavity. The phase shift intro-
duced by the bead can cause the excitation
at one end of the cavity to be greater than
that at the other so that, for a given excita-
tion at the vicinity of the input coupling
loop, the total stored energy in the cavity
may vary. Thus, the coupling efficiency of
the loop and the transmission efficiency of
the cavity no longer follow the first-order
predictions.

Consider the cavity of Fig. 1, consisting
of a section of uniform transmssion line of

fe—L—L—= n.l

Fig. 1—Equivalent circuit of cavity.

* Received by the PGMTT, June 12, 1961; re-
vised manuscript recetved, December 2, 1961, This
work was supported by the U, S. Atomic Energy Com-
mission.

1W. R, Ayers, E. L. Chu, and W. J. Gallagher,
“Measurements of Interaction Impedance 1n Periodic
Circuits,” W. W. Hansen Labs. of Physics, Stanford
University, Stanford, Calif., Internal Memo., ML
Rept. No. 403; June, 1957,

1+ (5 + b cos? 8I)* + 3Ab? cos? BI[4(1 — 21/L) sin 8 — cos L]

®

where 2=1/n%L is the coupling coefficient,
b=B/al is a renormalization of the bead
susceptance, A is a small quantity which
represents the loss within the cavity, and
6 is the frequency shift, normalized to the
half-bandwidth of the cavity. Note that
cos ol represents the unperturbed electric
field distribution.

It is the last term in the denominator
which leads to the distortion of the re-
sponse. It appears to be small since it is of
order, A, but the term is also proportional
to b2 From the first term, it will be recog-
nized that & is the ratio of the maximum
frequency perturbation introduced by the
bead to the hali-bandwidth of the cavity.
If the bead is large enough to shift the reso-
nant frequency several bandwidths, the fac-
tor b? may well be large enough to make the
factor in 1—2!/L significant. (It should be
noted that, since the frequency variable &
does not enter this term, the resonant fre-
quency itself continues to follow the first-
order perturbation theory.)

This effect has been observed in tests of
27 /3 mode disk-loaded accelerator sections.
For a 3-disk cavity, one wavelength long,
a frequency perturbation curve of the form
of Fig. 2(a) was observed. The data were ob-
tained using slope detection and a large
bead which introduced a maximum change
of transmission of —19 db. The curve ap-
peared to agree with expectations except
for the end effect where the bead interacts
with its image in the end-plate. To eliminate
the end-plate errors, a second measurement
was made with a 6-disk (two-wavelength)
cavity. [t was expected that the curve would
be identical to two of the original curves
pasted together escept, of course, for the
elimination of end-plate effects on the cen-
tral hump. Instead, the curve was found to
be considerably distorted, as shown in
Fig. 2(b).

In the Jatter cavity the voltage attenu-
ation was relatively large, so that A=al

2 This analysis is presented without regard for
space-harmonics in the cavity. The author has shown
in a recent paper, “A Perturbation Technique for
Impedance Measurements” (presented at the IEE
Conf. on Microwave Measurements and Techniyues,
London, Eng., September 6, 1961), that the presence of
space harmonics modifies the effective susceptance of
the bead 1 a manner strictly periodic with the load-
ing elements of the structure.



